一种采用光纤光栅温度传感器的触头温度测量方案
- 分类:公司新闻
- 发布时间:2020-07-24 15:29
摘要:六个光纤光栅温度传感器的同时测量就涉及到光路的复用问题,光纤光栅传感器的复用可以采用波分复用(WDM)、空分复用(SDM)或时分复用(TDM)方式,本系统是采用空分复用和波分复用方法。如图2所示,用1′8耦合器实现对传感器的空分复用,这样可以避免采用单一波分复用的弊端,即多个传感器串连在一根光纤上,在其中一个传感器损坏时会影响其它传感器信号的传输;同时在传感器工作波长的选择上又采用了波分复用方式,用来提高系统的测量速度,即在波长解调时采用一个扫描周期可以实现六个传感器的同时测量。 在图2中,A、B、C三相的六个光纤光栅温度传感器处于高电压侧,分别安装在静触头孔径内,而耦合器、波长解调器、控制器以及数据处理电路都处于地电位侧,安装在控制室内,采用长距离的光纤传输来实现高电压侧绝缘隔离。图中的A1、B1、C1,A2、B2、C2是本文设计的光纤光栅温度传感器,分别分布在隔离触头的上侧和下侧A、B、C三相上,在常温下传感器的波长分别为1548.5nm、1550.1nm、1551.6nm、1553.5nm、1555.5nm、1557.1nm,灵敏度为0.011nm/℃、0.013nm/℃、0.011nm/℃、0.010nm/℃、0.011nm/℃、0.012nm/℃,测量范围为0"110℃;耦合器为 由7个3dB耦合器组合而成的1′8耦合器;波长解调器为采用压电陶瓷驱动标准具实现波长扫描,其工作波长范围为1548"1558nm,覆盖6个传感器在0"110℃温度变化时的所有波长带;控制器在数据处理器的控制下实现波长解调器的扫描。 高压开关柜在运行时,触头、母线、电流互感器、柜体等构成了多个热源,高压开关柜及内部各部件又构成了复杂的热阻网络[14]。在此系统中,要通过理论推导出触头温升与光纤光栅传感器温升间的数学关系是比较困难的,因此本文通过试验方法建立了它们之间的数学模型。 温升实验是在10kV高压开关柜上进行的,实验时三相触头接触正常,工作额定电流为1kA,室温为25℃。图3是上隔离触头B相的温升过程曲线,可以看出光纤光栅传感器测量的温升变化要比触头的实际温升变化慢,但它们的变化趋势是相同的,大约在3h以后温度场变化趋于稳定。测量温度与实际温度间的差值是由于传感器采用非接触方式测量温度,它依靠静触头的辐射来传递热量。表1是其温升测量数据。 可以看出在开关柜触头接触正常、温度变化稳定后各个触头的实际温升值DTC与对应的传感器温升值DTS之间的比例关系都在1.43附近,取其平均值作为试验结果,可建立触头的实际温度与传感器的测量温度间的数学关系式为TC="K"(TS-T)+T(3) 式中K="1".43;TS为光纤光栅温度传感器测量的温度值;T为高压开关柜环境温度
一种采用光纤光栅温度传感器的触头温度测量方案
摘要:六个光纤光栅温度传感器的同时测量就涉及到光路的复用问题,光纤光栅传感器的复用可以采用波分复用(WDM)、空分复用(SDM)或时分复用(TDM)方式,本系统是采用空分复用和波分复用方法。如图2所示,用1′8耦合器实现对传感器的空分复用,这样可以避免采用单一波分复用的弊端,即多个传感器串连在一根光纤上,在其中一个传感器损坏时会影响其它传感器信号的传输;同时在传感器工作波长的选择上又采用了波分复用方式,用来提高系统的测量速度,即在波长解调时采用一个扫描周期可以实现六个传感器的同时测量。 在图2中,A、B、C三相的六个光纤光栅温度传感器处于高电压侧,分别安装在静触头孔径内,而耦合器、波长解调器、控制器以及数据处理电路都处于地电位侧,安装在控制室内,采用长距离的光纤传输来实现高电压侧绝缘隔离。图中的A1、B1、C1,A2、B2、C2是本文设计的光纤光栅温度传感器,分别分布在隔离触头的上侧和下侧A、B、C三相上,在常温下传感器的波长分别为1548.5nm、1550.1nm、1551.6nm、1553.5nm、1555.5nm、1557.1nm,灵敏度为0.011nm/℃、0.013nm/℃、0.011nm/℃、0.010nm/℃、0.011nm/℃、0.012nm/℃,测量范围为0"110℃;耦合器为 由7个3dB耦合器组合而成的1′8耦合器;波长解调器为采用压电陶瓷驱动标准具实现波长扫描,其工作波长范围为1548"1558nm,覆盖6个传感器在0"110℃温度变化时的所有波长带;控制器在数据处理器的控制下实现波长解调器的扫描。 高压开关柜在运行时,触头、母线、电流互感器、柜体等构成了多个热源,高压开关柜及内部各部件又构成了复杂的热阻网络[14]。在此系统中,要通过理论推导出触头温升与光纤光栅传感器温升间的数学关系是比较困难的,因此本文通过试验方法建立了它们之间的数学模型。 温升实验是在10kV高压开关柜上进行的,实验时三相触头接触正常,工作额定电流为1kA,室温为25℃。图3是上隔离触头B相的温升过程曲线,可以看出光纤光栅传感器测量的温升变化要比触头的实际温升变化慢,但它们的变化趋势是相同的,大约在3h以后温度场变化趋于稳定。测量温度与实际温度间的差值是由于传感器采用非接触方式测量温度,它依靠静触头的辐射来传递热量。表1是其温升测量数据。 可以看出在开关柜触头接触正常、温度变化稳定后各个触头的实际温升值DTC与对应的传感器温升值DTS之间的比例关系都在1.43附近,取其平均值作为试验结果,可建立触头的实际温度与传感器的测量温度间的数学关系式为TC="K"(TS-T)+T(3) 式中K="1".43;TS为光纤光栅温度传感器测量的温度值;T为高压开关柜环境温度
- 分类:公司新闻
- 发布时间:2020-07-24 15:29
六个光纤光栅温度传感器的同时测量就涉及到光路的复用问题,光纤光栅传感器的复用可以采用波分复用(WDM)、空分复用(SDM)或时分复用(TDM)方式,本系统是采用空分复用和波分复用方法。如图2 所示,用1′8 耦合器实现对传感器的空分复用,这样可以避免采用单一波分复用的弊端,即多个传感器串连在一根光纤上,在其中一个传感器损坏时会影响其它传感器信号的传输;同时在传感器工作波长的选择上又采用了波分复用方式,用来提高系统的测量速度,即在波长解调时采用一个扫描周期可以实现六个传感器的同时测量。
在图2 中,A、B、C三相的六个光纤光栅温度传感器处于高电压侧,分别安装在静触头孔径内,而耦合器、波长解调器、控制器以及数据处理电路都处于地电位侧,安装在控制室内,采用长距离的光纤传输来实现高电压侧绝缘隔离。图中的A1、B1、C1,A2、B2、C2是本文设计的光纤光栅温度传感器,分别分布在隔离触头的上侧和下侧A、B、C 三相上,在常温下传感器的波长分别为1548.5nm、1550.1nm、1551.6nm、1553.5nm、1555.5nm、1557.1nm,灵敏度为0.011nm/℃、0.013nm/℃、0.011nm/℃、0.010nm/℃、0.011nm/℃、0.012nm/℃,测量范围为0"110℃;耦合器为
由7 个3dB耦合器组合而成的1′8耦合器;波长解调器为采用压电陶瓷驱动标准具实现波长扫描,其工作波长范围为1548"1558nm,覆盖6 个传感器在0"110℃温度变化时的所有波长带;控制器在数据处理器的控制下实现波长解调器的扫描。
高压开关柜在运行时,触头、母线、电流互感器、柜体等构成了多个热源,高压开关柜及内部各部件又构成了复杂的热阻网络[14]。在此系统中,要通过理论推导出触头温升与光纤光栅传感器温升间的数学关系是比较困难的,因此本文通过试验方法建立了它们之间的数学模型。
温升实验是在10kV 高压开关柜上进行的,实验时三相触头接触正常,工作额定电流为1kA,室温为25℃。图3 是上隔离触头B 相的温升过程曲线,可以看出光纤光栅传感器测量的温升变化要比触头的实际温升变化慢,但它们的变化趋势是相同的,大约在3h 以后温度场变化趋于稳定。测量温度与实际温度间的差值是由于传感器采用非接触方式测量温度,它依靠静触头的辐射来传递热量。表1 是其温升测量数据。
可以看出在开关柜触头接触正常、温度变化稳定后各个触头的实际温升值DTC 与对应的传感器温升值DTS之间的比例关系都在1.43 附近,取其平均值作为试验结果,可建立触头的实际温度与传感器的测量温度间的数学关系式为TC="K"(TS-T)+T (3) 式中 K="1".43;TS为光纤光栅温度传感器测量的温度值;T为高压开关柜环境温度
上海煊峰光电科技有限公司
上海厂址:上海市嘉定区马陆镇申霞路6号
苏州厂址:江苏省常熟市董浜镇安富路26号6号厂房
联系人:周先生
电话:021-59962896
手机:13681782636
电子邮件:zhouqh@shxfop.com.cn
Copyright © 2020 上海煊峰光电科技有限公司 All Rights Reserved沪ICP备:0123456789号 网站建设:中企动力 上海